a2 United States Patent

Belluomini et al.

US009152501B2

US 9,152,501 B2
Oct. 6, 2015

(10) Patent No.:
(45) Date of Patent:

(54) WRITE PERFORMANCE IN
FAULT-TOLERANT CLUSTERED STORAGE
SYSTEMS

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Wendy A. Belluomini, San Jose, CA
(US); Karan Gupta, San Jose, CA (US);
Dean Hildebrand, San Jose, CA (US);
Anna S. Povzner, San Jose, CA (US);
Himabindu Pucha, San Jose, CA (US);
Renu Tewari, San Jose, CA (US)

(73) Assignee: International Business Machines

Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 215 days.

(21) Appl. No.: 13/719,590

(22) Filed: Dec. 19, 2012
(65) Prior Publication Data
US 2014/0173326 Al Jun. 19, 2014
(51) Imt.ClL
GO6F 11/00 (2006.01)
GO6F 11/14 (2006.01)
GO6F 17/30 (2006.01)
HO4L 29/08 (2006.01)
(Continued)
(52) US.CL
CPC ... GOG6F 11/1412 (2013.01); GO6F 11/1666

(2013.01); GOG6F 17/30132 (2013.01); HO4L
67/1095 (2013.01); HO4L 67/2842 (2013.01);
GOG6F 11/20 (2013.01); GO6F 2201/825
(2013.01)

(58) Field of Classification Search
CPC . GO6F 11/1412; GOG6F 11/0709; GO6F 11/14;
GOG6F 11/1425; GOG6F 11/1435; GO6F 11/1441,

100

GOG6F 11/1458; GOGF 11/1612; GO6F 11/1666;
GOG6F 11/20; GO6F 17/30132; GOGF 2201/825;
HO4L 67/2842; HO4L 67/1095
USPC 714/20,2,4.1, 6.1, 6.3; 707/822, 610,
707/619

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,827,214 B1* 11/2010 Ghemawat et al. 707/822
7,962,779 B2* 6/2011 Pateletal. 714/6.12
(Continued)
OTHER PUBLICATIONS

Stodolsky et al., Parity Logging Overcoming the Small Write Prob-
lem in Redundant Disk Arrays, IEEE, 1993.

(Continued)

Primary Examiner — Joseph D Manoskey

(74) Attorney, Agent, or Firm — Lieberman & Brandsdorfer,
LLC

(57) ABSTRACT

Embodiments of the invention relate to supporting transac-
tion data committed to a stable storage. Committed data in the
cluster is stored in the persistent cache layer and replicated
and stored in the cache layer of one or more secondary nodes.
One copy is designated as a master copy and all other copies
are designated as replica, with an exclusive write lock
assigned to the master and a shared write lock extended to the
replica. An acknowledgement of receiving the data is com-
municated following confirmation that the data has been rep-
licated to each node designated to receive the replica. Man-
agers and a director are provided to support management of
the master copy and the replicas within the file system,
including invalidation of replicas, fault tolerance associated
with failure of a node holding a master copy, recovery from a
failed node, recovered of the file system from a power failure,
and transferring master and replica copies within the file
system.

18 Claims, 7 Drawing Sheets

! Transaction Received !,_. 102

Piace Transaction Data in Page Cache 104
of Recipient Node

Replicate Received Data to One or More
Secondary Nodes

*»- 106

Place Replicated Data in Page Cache

of Secondary Node 108

Secondary Node Sends Acknowledgment 10
to Recipient Node

!

Recipient Node Sends Primary L 112
Acknowledgment for Transaction After
all Replica Acknowledgments are Receivad

US 9,152,501 B2
Page 2

(51) Imt.ClL
GO6F 11/16 (2006.01)
GOGF 11/20 (2006.01)
(56) References Cited

U.S. PATENT DOCUMENTS

7,979,652 Bl 7/2011 Sivasubramanian
8,024,507 B2 9/2011 Patel et al.

8,041,735 B1* 10/2011 Lacapraetal. 707/783
8,065,479 B2 112011 Humlicek
2007/0276983 Al* 11/2007 Zoharetal. 711/100

2009/0157766 Al 6/2009 Shen et al.
2009/0217274 Al 8/2009 Corbin et al.
2009/0319600 Al 12/2009 Sedan et al.

2010/0095046 Al 4/2010 Reid et al.

2010/0191712 Al 7/2010 Wolman et al.

2010/0299553 Al* 11/2010 Cenccovovvviviviiiiincinns 714/4
2010/0306448 Al 12/2010 Chen et al.

2011/0022801 Al 12011 Flynn

OTHER PUBLICATIONS

IBM et al., Autonomic Buffer Pool Management to Improve Sequen-
tial Read and Write I/O Performance, Jul. 18, 2006.

Xuetal., Using Memcached to Promote Read Throughput in Massive
Small-File Storage System, 2010 Ninth International Conference on
Grid and Cloud Computing, pp. 24-29, IEEE Computer Society,
2010.

* cited by examiner

U.S. Patent Oct. 6, 2015 Sheet 1 of 7 US 9,152,501 B2

100
u
Transaction Received Sl 117
¥
Place Transaction Data in Page Cache | 104
of Recipient Node
ki
Replicate Received Datato One orMore | 108
Secondary Nodes] ¢
4
Place Replicated Data in Page Cache | 108
of Secondary Node ©
¥
sacondary Node Sends Acknowledgment | 110
to Recipient Nods i
\:2
Hecipient Node Sends Primary e 417
Acknowledgment for Transaction After
ali Replica Acknowledgments are Received

FIG. 1

U.S. Patent Oct. 6, 2015 Sheet 2 of 7 US 9,152,501 B2

22~ Cluster Node Failure 200

04 e Takenver Node Ascuires Lost
Byte Range Heid by Failed Node

;\ P

Did Did \ . F 212
the Failed Node have ihe Failed Node have NG ;
a Replica Byte-Renge END
in C-ache/?/ Y

a Maslar-Byte Range
in Casi:7
YES POYES 14
¥ A

Taksover Node Notfies Every
Master Node in the Cluster of
the Nods Fallure for which Faiiad
Node Held #s Replica

Takaover Node Acguires

2038 -~ o : i i
Zxelusive Write Lock

V i 218
Masier Node Receives
"Replics Failed” Notification

X

¥ 7 21

Master Node Requests a New
Replica Node

299 ' 390
l'f V j/‘ Z

Master Mode Vrites Master Byle . .
) ! Rasiar Noda Flushas Mastar Copy
Rangs to New Replica Node, and RPN s e beare o
N S it in Digk Slorage Subsystern and
Replica Node Aoquiras a Shared Wiie e VTR
invabdates Raplica on Replica Nodss

Lock for Replica Byle Ranga

¥ y A

Master Node Send Acknowledgment
fo Take-Over Nodels)

e

4

¥
226, // Did]

7 Takeover
(sode Receive All
\\f\cknowiedgmerits?

NGO ~ 248
intervel

S

FiG. 2

U.S. Patent Oct. 6, 2015 Sheet 3 of 7 US 9,152,501 B2

304
"4

Write Byle-Range i Slorage Subsystem +— 302

¥
Master Nodes Sends Invalidation Message | 204

to Replica Nodes in the Cluster ~

ki

Each Replica Node in Receiptofthe | 308
invalidation Message

4

frvalidates a Replica Byte-Kangs 308
in Cache Layer

7

Releases a Corresponding Write Lock —34p
for the Replica Byie-Range B

\:2

Send Acknowledgment to the 31D
Master Node

¥

Has Master Node Recsived 314
Acknowledgment from Each Replica v

¥
Master Node Releases Comresponding | 318
Exclisive Write Lock for Byle Range ¢

FIG. 3

U.S. Patent Oct. 6, 2015 Sheet 4 of 7 US 9,152,501 B2
440 Cluster Comes Back from AV
n) : - 402
4 the Power Failurg
k2
Each Node in a Clusier Examines
Matadata of Every Bvie-Range 404
it the Persistent Cachs Layar
fo 406
fEs Byte-Range a NO
Master Copy?
¥ ¥
Acguirs Exclusive Wiile 1§ 440 Acruire Shared Write | 408
Lok for the Byle-Range Lotk for the Byte-Range

Was Lock ™
Successiuly
. Acguirad?

invalidate the Byle-Range
in the Cache Laver

o
-3

414

3

/

i Al Cluster

Nodes Validate ther
Byte-Ranges in
the Cache
Layer?

418
fnterval

U.S. Patent

500

Oct. 6, 2015 Sheet 5 of 7 US 9,152,501 B2
A Node in the File System 50
Requests an BExchisive Look v

504

Does the
Requesting Nods Held
ar Exclusive YWrits Lack
for the Byle-Range
Subjecifo the
Requesty

Exlend Exclusive Write Lock fo the
Requiesting Mode

Does the
Reguesting Node
Hold a Replica Byle Range
Sublectta the
Request?

Change Designation of the -
_ - 510
Byle Range
ki
Transfer Exclusive Lock to &
: , 512
Reguesting Node

ki
dvie Range on Node Designated | -

J . 3 e

as New Master Copy with
Exclusive Write Lok

ki
Ramave Prior Master Cony "
p ! -~ 518
from Cache Layer

FIG. 5

US 9,152,501 B2

Sheet 6 of 7

Oct. 6, 2015

U.S. Patent

e e eAAAARARL 2R R AR rerinnARRRRRRRRRRARAnrr s
I .

_ Jobaue kssue)

_ safeury A1sa03Ey

_ iafeupp uneg

_ sabeuryy umne Aty

_ SR T\, S

FaAE
{73

aorg washsend | Aoweyy Fres 70
G 0T
BRAT 723

it .
008 LUBIBAG 3y 1SN

U.S. Patent

Communication
Infrastruclure
(BUS)

Oct. 6, 2015 Sheet 7 of 7 US 9,152,501 B2
04
& » Frocessor o
e 704
5 S Main Memory o — 710
(708
Display Display
206 — interface Unit
Secondary Memory ko 712
744 Hard
Disk Drive
(748
L
| Removable Storsge | 1 Rg?ffvabie
7 rive Orags
716 4 Lnit
Removable
interface
79 A ot Slorags
Unit
7267 708
jzii m: Communication Comm ﬂicjaticrz Path
Interface u -

FIG. 7

US 9,152,501 B2

1
WRITE PERFORMANCE IN
FAULT-TOLERANT CLUSTERED STORAGE
SYSTEMS

BACKGROUND

The present invention relates to write performance in clus-
tered file systems. More specifically, the invention relates to
integrating a file system cache of a clustered storage system
with a distributed memory layer to enable efficiency of syn-
chronous write transactions.

Workloads with a plurality of synchronous write opera-
tions or a high ratio of commit operations are known to suffer
performance penalties. These workloads are common in data-
base workloads with a high ratio of commits. Similarly, web
based workloads perform a series of file operations requiring
a commit to stable storage when closing a file. Virtual
machines have their own block layer, and all write transac-
tions arriving to an underlying storage in the virtualized envi-
ronment are synchronous and require immediate commit to a
stable storage. Each of these operations requires workload
data to be written to a storage subsystem before returning an
acknowledgement to the client. The performance penalties
are reflected in increased write latency because disk access
latencies are orders of magnitude higher than dynamic RAM
(also referred to herein as DRAM) latencies. In addition,
commit operations do not allow the file system to delay a
write transaction by gathering a plurality of the write trans-
actions into a single I/O to a storage subsystem. Accordingly,
various types of operations that require writing data to a
storage subsystem and an associated acknowledgement com-
munication are affected by performance penalties.

BRIEF SUMMARY

This invention comprises a system and article for mitigat-
ing performance penalties associated with synchronous write
transactions in a fault-tolerant clustered file system.

In one aspect, a computer program product is provided to
integrate a stable memory layer with a page cache layer in a
file system. The computer program product includes a com-
puter-readable storage medium having program code embod-
ied therewith. The program code is executable by a processor.
More specifically, program code is provided to temporarily
hold committed data in distributed non-volatile memory of
the nodes in the cluster. In response to receipt of a synchro-
nous write transaction in the file system, data associated with
the received write transaction is placed in the layer and rep-
licated within the layer of one or more remote nodes in the file
system. Program code is also provided to distinguish between
a master copy and a replica of the received data. This distinc-
tion includes application of existing cache policies to the
master copy of the received data. Each replica is invalidated
on the respective remote node in response to flushing of the
master copy to persistent storage.

In another aspect, a system is provided with a stable
memory layer integrated with a page cache layer in a file
system to hold committed data in distributed non-volatile
memory of nodes in a cluster. Each node is provided with a
processing unit in communication with memory. A functional
unit is provided in communication with at least one of the
processing units. The functional unit includes tools to support
a write transaction in a fault-tolerant file system. The tools
include, but are not limited to, a placement manager, a direc-
tor, and an invalidation manager. The placement manager is
responsible for placement of data associated with a received
write transaction in the layer of at least one node. The director,

10

15

20

25

30

35

40

45

50

55

60

65

2

which is in communication with the placement manager, is
responsible for distinguishing between a master copy of the
received data and a replica of the received data. This func-
tionality of the director includes application of existing cache
policies to the master copy of the received data. The invali-
dation manager, which is in communication with the director,
invalidates each replica in response to a flush of the master
copy to persistent storage.

Other features and advantages of this invention will
become apparent from the following detailed description of
the presently preferred embodiment of the invention, taken in
conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The drawings referenced herein form a part of the specifi-
cation. Features shown in the drawings are meant as illustra-
tive of only some embodiments of the invention, and not of all
embodiments of the invention unless otherwise explicitly
indicated.

FIG. 1 is a flow chart depicting arrival of a synchronous
write transaction to the file system.

FIG. 2 is a flow chart depicting preventing loss of data
when one or more nodes in the cluster have been subject to
failure.

FIG. 3 is a flow chart depicting the master node flushing the
master copy of the byte-range to the disk storage subsystem.

FIG. 4 is a flow chart depicting the process of preventing
loss of committed data when the cluster returns from the
power failure.

FIG. 5 is a flow chart depicting a process for transferring
locks, which may also transfer the designation between a
master copy and a replica.

FIG. 6 is a block diagram illustrating a system with tools to
support a transaction in a fault-tolerant file system.

FIG. 7 depicts a block diagram illustrating a system for
implementing an embodiment of the present invention.

DETAILED DESCRIPTION

It will be readily understood that the components of the
present invention, as generally described and illustrated in the
Figures herein, may be arranged and designed in a wide
variety of different configurations. Thus, the following
detailed description of the embodiments of the apparatus,
system, and method of the present invention, as presented in
the Figures, is not intended to limit the scope of the invention,
as claimed, but is merely representative of selected embodi-
ments of the invention.

Reference throughout this specification to “a select
embodiment,” “one embodiment,” or “an embodiment”
means that a particular feature, structure, or characteristic
described in connection with the embodiment is included in at
least one embodiment of the present invention. Thus, appear-
ances of the phrases “a select embodiment,” “in one embodi-
ment,” or “in an embodiment™ in various places throughout
this specification are not necessarily referring to the same
embodiment.

The described features, structures, or characteristics may
be combined in any suitable manner in one or more embodi-
ments. In the following description, numerous specific details
are provided, such as examples of a placement manager,
computation manager, etc., to provide a thorough understand-
ing of embodiments of the invention. One skilled in the rel-
evant art will recognize, however, that the invention can be
practiced without one or more of the specific details, or with

US 9,152,501 B2

3

other methods, components, materials, etc. In other instances,
well-known structures, materials, or operations are not shown
or described in detail to avoid obscuring aspects of the inven-
tion.

In the following description of the embodiments, reference
is made to the accompanying drawings that form a part
hereof, and which shows by way of illustration the specific
embodiment in which the invention may be practiced. It is to
be understood that other embodiments may be utilized
because structural changes may be made without departing
from the scope of the present invention.

The functional unit(s) described in this specification has
been labeled with tools in the form of manager(s) and a
director. The tools may be implemented in programmable
hardware devices such as field programmable gate arrays,
programmable array logic, programmable logic devices, or
the like. The tools may also be implemented in software for
processing by various types of processors. An identified tool
of executable code may, for instance, comprise one or more
physical or logical blocks of computer instructions which
may, for instance, be organized as an object, procedure, func-
tion, or other construct. Nevertheless, the executable of an
identified tool need not be physically located together, but
may comprise disparate instructions stored in different loca-
tions which, when joined logically together, comprise the
tools and achieve the stated purpose of the tools.

Indeed, the executable code could be a single instruction,
or many instructions, and may even be distributed over sev-
eral different code segments, among different applications,
and across several memory devices. Similarly, operational
data may be identified and illustrated herein within the man-
ager, and may be embodied in any suitable form and orga-
nized within any suitable type of data structure. The opera-
tional data may be collected as a single data set, or may be
distributed over different locations including over different
storage devices, and may exist, at least partially, as electronic
signals on a system or network.

Reference throughout this specification to “a select
embodiment,” “one embodiment,” or “an embodiment”
means that a particular feature, structure, or characteristic
described in connection with the embodiment is included in at
least one embodiment of the present invention. Thus, appear-
ances of the phrases “a select embodiment,” “in one embodi-
ment,” or “in an embodiment” in various places throughout
this specification are not necessarily referring to the same
embodiment.

Furthermore, the described features, structures, or charac-
teristics may be combined in any suitable manner in one or
more embodiments. In the following description, numerous
specific details are provided, such as examples of a placement
manager, an invalidation manager, a fault manager, a recovery
manager, a transfer manager, a director, etc., to provide a
thorough understanding of embodiments of the invention.
One skilled in the relevant art will recognize, however, that
the invention can be practiced without one or more of the
specific details, or with other methods, components, materi-
als, etc. In other instances, well-known structures, materials,
or operations are not shown or described in detail to avoid
obscuring aspects of the invention.

The illustrated embodiments of the invention will be best
understood by reference to the drawings, wherein like parts
are designated by like numerals throughout. The following
description is intended only by way of example, and simply
illustrates certain selected embodiments of devices, systems,
and processes that are consistent with the invention as
claimed herein.

10

15

20

25

30

35

40

45

50

55

60

65

4

File system cache of a clustered storage system is inte-
grated with a stable distributed memory layer. This integra-
tion enables efficient acknowledgement of synchronous write
transactions, which include any transaction that requires
updated data to be physically stored on stable storage, e.g.
disk, ssd, prior to responding to a client request. In one
embodiment, the synchronous write transaction includes a
commit transaction. Specifically, the integration enables
maintenance of committed data in the file system cache and a
delay of flushing the committed data to a disk subsystem. At
the same time, the integration guarantees that the data is not
lost due to a cluster node failure or a power failure. Accord-
ingly, synchronous write latencies are mitigated.

FIG. 1 is a flow chart (100) depicting arrival of a synchro-
nous write transaction to the file system. As shown, the trans-
action is received by one of the nodes in the file system (102).
Data associated with the transaction is placed in page cache of
the recipient node using existing cache policies (104). Page
cache is a buffer in memory partitioned into pages, which
represent file system blocks in memory. The page cache layer
is a software mechanism in the file system that allows file
system blocks to be reflected in a memory subsystem, so that
accesses to these pages can be satisfied without first having to
access physical storage. The received data is then replicated
to at least one secondary node in the file system (106). In one
embodiment, the secondary node is any node in the file sys-
tem that is not the recipient node. The quantity of secondary
nodes that receive the replication is based on reliability and
availability characteristics of the system. For each replication
received, the replicated data is placed in page cache of the
associated secondary node (108), and the secondary node
sends an acknowledgement communication to the recipient
node (110). In one embodiment, the replica data is in persis-
tent DRAM, e.g. flash backed RAM. Once all of the acknow]-
edgement communications for each of the replicas are
received, the recipient node sends a primary acknowledge-
ment to the client from which the transaction originated
(112). Accordingly, the transaction data is replicated within
the cache layer of the file system and acknowledged to the
client from whom the transaction originated without flushing
the data to a disk subsystem.

There is no change in the behavior of the file system from
that demonstrated in FIG. 1 for a synchronous write transac-
tion when an asynchronous write transaction is received.
When a commit operation is received by the file system, dirty
pages are replicated to one or more nodes in the file system.
After replication is acknowledged from each of the node to
which the data has been replicated, the commit is acknowl-
edged back to the client that originated the commit operation.
Accordingly, the data associated with the commit operation is
replicated in the cache layer of one or more replica nodes and
acknowledged to the originating client without flushing the
data to a disk subsystem.

As demonstrated in FIG. 1, committed data is maintained
in the cache layer of the file system and flushing of the data to
a disk or disk subsystem is delayed. At the same time, persis-
tent characteristics of the cache layer, e.g. battery backed
DRAM, flash backed DRAM, or flash devices, ensure that the
committed data is not lost due to a data center power failure,
and replication ensures that the committed data is not lost due
to a cluster node failure.

The file system includes two or more nodes in communi-
cation with a disk subsystem or data center. As demonstrated
in FIG. 1, for data received from a synchronous write trans-
action, a replica is maintained on at least one replica node. A
distinction is made between a master copy of the data and a
replica. Specifically, a master copy holds an exclusive cluster-

US 9,152,501 B2

5

wide write lock on the data, and the replica node holds a
shared cluster-wide write lock on the data. As such, the copies
are distinguished by the characteristics of the locks main-
tained by the nodes with the data in the associated cache layer.
In one embodiment, a master copy is for a select byte range in
the cache layer. For example, a select node may be a master
copy fora first byte range in the cache layer and a replica copy
for a second byte in the cache layer. Accordingly, the cache
layer of each node may include both master and replica cop-
ies, with each copy distinguished by an associated byte range,
and the master copy having an exclusive cluster-wide write
lock on the master byte range and the replica copy having a
shared cluster-wide write lock on the replica byte range.

Handling an arrival of a read transaction is the same as
traditionally done in clustered file systems. In response to the
read transaction to the file system, the requested byte-range is
read from the local page cache if the data is in the local page
cache of the recipient node. Otherwise, if the requested byte-
range is in the page cache of any remote nodes, the master
copy of the requested byte-range is flushed to a disk sub-
system, the data is read from the disk subsystem to the page
cache of the recipient node, and the read is serviced from the
local page cache.

One or more nodes in the file system could be subject to
failure, including a master node and a replica node. FIG. 2 is
a flow chart (200) depicting preventing loss of data when one
or more nodes in the cluster have been subject to failure. In
response to detection ofa cluster node failure (202), one of the
nodes, e.g. a takeover node, in the cluster acquires the lost
byte-range held by the failed node (204). Itis then determined
if the failed node had a master-byte range within the lost
byte-range in the cache layer (206). If there is a master byte-
range present, the takeover node acquires the exclusive write
lock for the master-byte range it has acquired (208). Accord-
ingly, in response to a node failure, any node taking over the
master-byte range acquires the associated exclusive write
lock for the master-byte range.

Following a negative response to the determination at step
(206) or acquisition of the exclusive write lock at step (208),
it is determined if the failed node had any byte-range in the
cache layer designated as replica-range data (210). A negative
response to the determination at step (210) concludes resolv-
ing any issues with the cache layer of the failed node (212).
However, a positive response to the determination at step
(210) is followed by the take-over node notifying every mas-
ter node in the cluster of the node failure for which the failed
node held its replica regarding the replica failure (214). The
byte range of the failed node may have a plurality of sub-
ranges associated with different master nodes in the cluster.
For example, the failed node may have a first byte range that
is a replica for one master node in the cluster, and a second
byte range that is a replica for a second master node in the
cluster. For each replica byte-range in the failed node, the
associated master node receives a notification of the node
failure pertaining to the replica data (216), and the associated
master node requests a new replica node in the cluster (218).

Once the new replica node has been designated, the master
node may elect one from two alternative actions. The first
alternative action is for the master node to write the master
byte-range to the new replica node and the replica node to
acquire a shared write lock for the replica byte-range (220).
The second alternative action is for the master node to flush
the master copy of the byte-range to the disk storage sub-
system and to invalidate each replica of the byte-range on the
replica nodes in the cluster (222). Following the action at
either (220) or (222), the master node for the subject byte-
range sends an acknowledgement to the take-over node (224),

10

15

20

25

30

35

40

45

50

55

60

65

6

and it is determined if the take-over node has received an
acknowledgement from each master node for the byte-ranges
in the failed node (226). A positive response to the determi-
nation at step (226) concludes the rectification of the node
failure (212), and a negative response to the determination at
step (226) is followed by waiting for a defined time interval
(228) and a return to step (226). Accordingly, the master node
for the replica byte-ranges in the failed node institutes one of
two actions to either create a new replica node or to flush the
data in the subject byte-range to the storage subsystem.

As demonstrated in FIG. 2, the master node may flush the
master copy of the byte-range to the disk storage subsystem.
FIG. 3 is a flow chart (300) depicting the details of this
process. The byte-range is written to the storage subsystem
(302), after which the master node sends an invalidation mes-
sage to the replica nodes in the cluster (304). Each replica
node in receipt of the invalidation message (306), invalidates
a replica byte-range in its cache layer (308), releases a corre-
sponding shared write lock for the replica byte-range (310),
and sends an acknowledgement to the master node (312).
Once the master node is in receipt of the acknowledgement
from each replica node for the byte-range (314), the master
node releases a corresponding exclusive write lock for the
byte-range (316).

A node in the file system may fail. The cause of the failure
is not significant. Rather, it is the manner in which the data in
the cache layer is maintained that is significant. One form of
failure is when the cluster is subject to a power failure. FIG. 4
is a flow chart (400) depicting the process of preventing loss
of committed data when the cluster returns from the power
failure. As shown, the process is initiated with the cluster
returning from a power failure (402). Each node in the cluster
examines metadata of every byte-range in its persistent cache
layer, e.g. battery backed DRAM or flash backed DRAM,
(404). Itis then determined if the byte-range contains a master
copy (406). A negative response to the determination at step
(406) is followed by the node acquiring a shared write lock for
the byte-range (408). In one embodiment, a lock manager
assigns the shared write lock to the acquiring node. Con-
versely, a positive response to the determination at step (406)
is followed by the node acquiring an exclusive write lock for
the byte-range (410). In one embodiment, the lock manager
assigns the exclusive lock to the acquiring node. Following
the lock acquisition at either step (408) or (410), it is deter-
mined if the lock was successtully acquired (412). A negative
response to the determination at step (412) is followed by
invalidating the byte-range in the cache layer (414). Follow-
ing step (414) or a positive response to the determination at
step (412), it is determined if all of the cluster nodes validated
their byte ranges in the cache layer (416). A negative response
to the determination at step (416) is followed by an internal
pause (418) and a return to step (416). Once all of the cluster
nodes have validated their byte-range in the cache layer, as
demonstrated by a positive response to the determination at
step (416), the cluster is considered to have returned from the
power failure.

Locks may be transferred among the nodes in the cluster.
FIG. 5 is a flow chart (500) depicting a process for transtfer-
ring locks, which may also transfer the designation between a
master copy and a replica. In response to a node in the file
system requesting an exclusive write lock (502), it is deter-
mined if the exclusive write lock is available for the byte-
range that is the subject of the request (504). A negative
response to the determination at step (504) is followed by
extending the exclusive write lock to the requesting node
(506). However, a positive response to the determination at
step (504) is followed by determining if the requesting node

US 9,152,501 B2

7

holds a replica byte-range associated with the lock request
(508). A positive response to the determination at step (508)
is followed by changing the designation of the byte-range
(510) and transferring the exclusive write lock to the request-
ing node (512). Conversely, a negative response to the deter-
mination at step (508) is followed by the byte-range on the
node being designated as the new master copy with the exclu-
sive write lock (514) followed by removal of the prior master
copy from the cache layer. Accordingly, write locks may be
transferred within the file system, together with a designation
of the underlying byte-range.

There are several options for managing in-memory replica
space. One option is to reserve a separate cache space on each
node for replica data, and the master replica may perform
space allocation and management for each replica. Another
option is not to reserve separate cache space for replica,
wherein the replicated write is treated as any other write
transaction and can cause page eviction on the replica node.
The replica can also be evicted causing the master replica to
be flushed to disk.

The system tracks committed but not flushed data and its
replicas. If a node holding a master copy fails, a new master
replica is elected from existing replicas and a new replica is
created. If a node fails with any copy of committed but not
flushed data, one more replica to replace a failed node replica
is placed on another cluster node. When a crashed node
returns, its cache layer is recovered and the cache content of
the returned node is discarded since new replicas have been
elected. Finally, in the event of a cluster failure, when power
is returned the content of the cache on each node is recovered
with all committed data in the cache layer then the non-
committed data can be invalidated.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a

20

30

40

45

8

carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

As shown in FIGS. 1-5, a method is provided to improve
write performance in a fault-tolerant file system. More spe-
cifically, the cache layer is configured with persistent RAM to
support write transactions and commit operations. Master
and replica byte-range within the cache layer have different
locks, the master byte-range having an exclusive lock and the

US 9,152,501 B2

9

replica byte-range having a shared lock. A single acknowl-
edgement communication is sent to the client that originated
the write transaction or commit operation, only after all of the
replica nodes have acknowledged receipt and storage of the
associated data in replica byte-range of the replica node. FIG.
6 is a block diagram (600) illustrating tools embedded in a
computer system to support the write transaction or commit
operation in the file system. A file system (610) is shown with
aplurality of nodes (620) and (640). Although only two nodes
are shown, the invention should not be limited to this quantity
of' nodes in the file system. Accordingly, two or more nodes
may be employed to structure the file system.

Each of the nodes is similarly configured. More specifi-
cally, node, (620) has a processing unit (622), in communi-
cation with memory (624) across a bus (626), and in commu-
nication with data storage (628), and node, (640) is provided
with a processing unit (642), in communication with memory
(644) across a bus (646), and in communication with second
local storage (648). The nodes (620) and (640) are part of the
file system (610) which is in communication with remote data
storage (650). Each of the nodes (620) and (640) are shown to
reside in a file system (610), and each of the nodes (620) and
(640) includes file system cache (630) and (632), respec-
tively, forming a file system cache layer in the cluster (610). In
one embodiment, the file system cache (630) and (632) is in
the form of persistent dynamic random access memory (“P-
DRAM?”), flash backed DRAM, or non-volatile RAM
(“NVRAM”). Accordingly, the file system cache (630) and
(632) is preferably a persistent form of RAM in order to
preserve the data in the event of a failure.

A functional unit is further provided within at least one of
the nodes, (620) and (640), to support management of write
performance in the file system. For ease of description, node,
(620) is shown having a functional unit (640) in communica-
tion with the processing unit (622) and having tools embodied
therewith to support a write transaction or a commit opera-
tions in a fault-tolerant file system. The tools include, but are
not limited to: a placement manager (642), a director (644), an
invalidation manager (646), a fault manager (648), a recovery
manager (660), and a transfer manager (662). Accordingly,
tools in the form of managers and a director are provided to
support receipt of a write transaction and fault tolerant pres-
ervation of associated data within the file system.

The placement manager (642) functions to respond to a
transaction in the form of a synchronous write transaction.
More specifically, the placement manager (642) places data
associated with the received transaction or operation in the
cache layer of the file system, and replicates data associated
with the received transaction or operation within the file sys-
tem cache layer. In one embodiment, each node in the file
system is provided with a placement manager (642) for
received data. The director (644) is provided in communica-
tion with the placement manager (642) and functions to dis-
tinguish between a master copy and a replica of received data.
Different caching techniques are applied by the director (644)
to the data associated with the transaction based upon the
classification. Accordingly, the placement manager (642) in
conjunction with the director (644) manages receipt and
placement of data associated with a write transaction or com-
mit operation received by any one of the nodes in the file
system.

The invalidation manager (646), fault manager (648),
recovery manager (660), and transfer manager (662) are each
provided in conjunction with the director (644) to enable
further functionality of the fault-tolerant replication of the
data. As described in detail in the flow charts of FIG. 1-5,
received data is replicated in the cache layer of the file system,

30

40

45

10

with one copy designated as a master copy, and each replica-
tion designated as a replica or replica copy. The master copy
is identified and associated with an exclusive cluster-wide
write lock, and the replica is identified and associated with a
shared cluster-wide write lock. The invalidation manager
(646) functions to invalidate each replica of the remote nodes
in response to flushing the master copy in the file system to
persistent storage. Once the master copy is removed from the
cache layer, each replica on the remote node(s) may be
removed from the cache layer, as the replicas function to
support the master copy as long as the master copy is in the
cache layer. Accordingly, the invalidation manager (646)
functions to maintain the integrity of the cache layer by invali-
dating each replica for which the master copy has been
flushed to persistent storage.

The fault manager (648) is provided in communication
with the director (644). The fault manager (648) functions to
support the fault tolerance characteristic of the file system.
More specifically, the fault manager (648) functions in
response to a node failure with the cache layer of the node
subject to the failure holding data designated as a master copy.
In one embodiment, the cache layer may include an extended
byte range with one subset of the byte-range designated as a
master copy and another subset of the byte-range designated
as a replica. Based on the determination of at least one subset
of'the byte range on the node subject to the failure designated
as a master copy, the fault manager (668) clects one of the
other nodes in the file system to acquire the master copy of the
data. The elected node acquires the exclusive cluster-wide
write lock for the new master copy of the data. In one embodi-
ment, the fault manager (648) employs a node in the cluster
that is designated as having the replica of the master copy in
the cache layer. In another embodiment, the fault manager
(648) facilitates replication of the data to a new secondary
node in the cluster and the new secondary node acquires the
exclusive cluster-wide write lock. Accordingly, the fault man-
ager (648) facilitates designation of a new master copy in the
event of failure of the node holding the master copy.

The recovery manager (660) is also provided in communi-
cation with the director (644), and functions to recover con-
tent on a recovered failed node, and in another embodiment to
recover data in response to recovery of the file system from a
power failure. With respect to the recovered failed node, the
recovery manager (660) functions to recover content on the
recovered failed node by reading data from non-volatile
memory of a surviving node. In this scenario, the cluster is not
subject to a cluster-wide failure, and as such, at least one node
in the cluster is considered to have survived. The surviving
node may be the master node of the cluster or an available
node in the cluster. Since the byte range in the cache layer is
associated with either an exclusive lock or a shared lock, the
characteristics of the byte range indicate whether the data
therein is a master copy of a replica. With respect to recovery
of'the file system from a power failure, the recovery manager
(660) functions to identify master and replica copies based on
characteristics within each byte range. More specifically, the
recovery manager (660) validates the master copies and rep-
lica copies within the cache layer by re-acquisition of appro-
priate locks, including an exclusive cluster wide write lock for
the master copies and a shared cluster wide write lock for the
replica copies. Accordingly, the recovery manager (660) is
configured to facilitate recovery of an individual node in the
cluster or the cluster from a cluster power failure.

The transfer manager (662) is provided in communication
with the director (644). The transfer manager (662) functions
to transfer designation of the master copy within the file
system. As indicated, the master copy is provided with a

US 9,152,501 B2

11

cluster wide exclusive write lock for the associated byte
range. The transfer manager (662) maintains the exclusive
write lock with the master copy. More specifically, if the
master copy is transfer to a requester node in the cluster, the
transfer manager (662) revokes the exclusive write lock from
the original node with the master copy and transfer the exclu-
sive write lock to the requester node. Accordingly, the master
copy may be transferred within the cluster, and the transfer
manager (662) facilitates the transfer of the master copy by
accompanying the transfer with the exclusive write lock
across the byte range.

The placement manager (642), director (644), invalidation
manager (646), fault manager (648), recovery manager (660),
and transfer manager (662) are configured to fault-tolerance
in the file system. As identified above, the placement manager
(642), director (644), invalidation manager (646), fault man-
ager (648), recovery manager (660), and transfer manager
(662) are shown residing in memory (624) of the node (620).
In one embodiment, the placement manager (642), director
(644), invalidation manager (646), fault manager (648),
recovery manager (660), and transfer manager (662) may
reside in memory local to one or more of the server nodes
residing in the file system. Similarly, in one embodiment, the
managers and director (642)-(662) may reside as hardware
tools external to memory and may be implemented as a com-
bination of hardware and software, or may reside local to
memory of any one of the nodes in the file system. Similarly,
in one embodiment, the managers and director (642)-(662)
may be combined into a single functional item that incorpo-
rates the functionality of the separate items. As shown herein,
each of the manager(s) are shown local to one node in the file
system. However, in one embodiment they may be collec-
tively or individually distributed across two or more node in
the file system and function as a unit to address and maintain
fault-tolerance. Accordingly, the managers and director may
be implemented as software tools, hardware tools, or a com-
bination of software and hardware tools.

Referring now to the block diagram (700) of FIG. 7, addi-
tional details are now described with respect to implementing
an embodiment of the present invention. The computer sys-
tem includes one or more processors, such as a processor
(702). The processor (702) is connected to a communication
infrastructure (704) (e.g., a communications bus, cross-over
bar, or network).

The computer system can include a display interface (706)
that forwards graphics, text, and other data from the commu-
nication infrastructure (704) (or from a frame buffer not
shown) for display on a display unit (708). The computer
system also includes a main memory (710), preferably ran-
dom access memory (RAM), and may also include a second-
ary memory (712). The secondary memory (712) may
include, for example, a hard disk drive (714) (or alternative
persistent storage device) and/or a removable storage drive
(716), representing, for example, a floppy disk drive, a mag-
netic tape drive, or an optical disk drive. The removable
storage drive (716) reads from and/or writes to a removable
storage unit (718) in a manner well known to those having
ordinary skill in the art. Removable storage unit (718) repre-
sents, for example, a floppy disk, a compact disc, a magnetic
tape, or an optical disk, etc., which is read by and written to by
a removable storage drive (716). As will be appreciated, the
removable storage unit (718) includes a computer readable
medium having stored therein computer software and/or data.

In alternative embodiments, the secondary memory (712)
may include other similar means for allowing computer pro-
grams or other instructions to be loaded into the computer
system. Such means may include, for example, a removable

10

20

25

30

35

40

45

50

55

60

65

12

storage unit (720) and an interface (722). Examples of such
means may include a program package and package interface
(such as that found in video game devices), a removable
memory chip (such as an EPROM, or PROM) and associated
socket, and other removable storage units (720) and interfaces
(722) which allow software and data to be transferred from
the removable storage unit (720) to the computer system.

The computer system may also include a communications
interface (724). Communications interface (724) allows soft-
ware and data to be transferred between the computer system
and external devices. Examples of communications interface
(724) may include a modem, a network interface (such as an
Ethernet card), acommunications port, or a PCMCIA slotand
card, etc. Software and data transferred via communications
interface (724) are in the form of signals which may be, for
example, electronic, electromagnetic, optical, or other signals
capable of being received by communications interface
(724). These signals are provided to communications inter-
face (724) via a communications path (i.e., channel) (726).
This communications path (726) carries signals and may be
implemented using wire or cable, fiber optics, a phone line, a
cellular phone link, a radio frequency (RF) link, and/or other
communication channels.

In this document, the terms “computer program medium,”
“computer usable medium,” and “computer readable
medium” are used to generally refer to media such as main
memory (710) and secondary memory (712), removable stor-
age drive (716), and a hard disk installed in hard disk drive or
alternative persistent storage device (714).

Computer programs (also called computer control logic)
are stored in main memory (710) and/or secondary memory
(712). Computer programs may also be received via a com-
munication interface (724). Such computer programs, when
run, enable the computer system to perform the features ofthe
present invention as discussed herein. In particular, the com-
puter programs, when run, enable the processor (702) to
perform the features of the computer system. Accordingly,
such computer programs represent controllers of the com-
puter system.

The flowcharts and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowcharts or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/

US 9,152,501 B2

13

or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated. Accordingly, the enhanced
cloud computing model supports flexibility with respect to
transaction processing, including, but not limited to, optimiz-
ing the storage system and processing transactions responsive
to the optimized storage system.

Alternative Embodiment(s)

It will be appreciated that, although specific embodiments
of the invention have been described herein for purposes of
illustration, various modifications may be made without
departing from the spirit and scope of the invention. Accord-
ingly, the scope of protection of this invention is limited only
by the following claims and their equivalents.

We claim:

1. A computer program product for integrating a stable
layer with a page cache layer in a file system, the computer
program product comprising a computer-readable storage
hardware device having program code embodied therewith,
the program code being executable by a processor to:

temporarily hold committed data in distributed non-vola-

tile memory of nodes in a cluster;

in response to receiving a synchronous write transaction in

the file system, place data associated with the received
write transaction in the page cache layer and replicate
the received data within the page cache layer of one or
more remote nodes in the cluster;

distinguish between a master copy of the received data and

a replica of the received data, including application of
existing cache policies to the master copy of the received
data; and

invalidate each replica on the one or more remote nodes in

response to flushing the master copy to persistent stor-
age.

2. The computer program product of claim 1, further com-
prising program code for the master copy to hold an exclusive
cluster-wide write lock and the replica to hold a shared clus-
ter-wide write lock.

3. The computer program product of claim 2, further com-
prising program code to maintain fault tolerance in response
to a failure of a node holding the master copy, including
electing a remote node to acquire the master copy by acquir-
ing the exclusive cluster-wide write lock for the data.

4. The computer program product of claim 3, further com-
prising program code to recover content on the recovered
failed node in response to the recovery of the failed node,
including reading data from non-volatile memory of a surviv-
ing node, wherein the surviving node is selected from the
group consisting of: an available node and the master node.

10

15

20

25

30

35

40

45

50

55

60

65

14

5. The computer program product of claim 2, further com-
prising program code to transfer designation of the master
copy to a requestor node, including revoking the exclusive
write lock from the master copy, and transferring the exclu-
sive write lock to the requestor node.

6. The computer program product of claim 1, further com-
prising in response to recovery of the cluster from a power
failure, program code to recover data from non-volatile
memory content on each node, and identify master and rep-
lica copies from a characteristic of data byte-range and vali-
date master and replica copies by re-acquiring cluster-wide
write locks.

7. A system comprising:

apage cache layer integrated with a stable memory layer in
a file system to temporarily hold committed data in
distributed non-volatile memory of nodes in a cluster,
each node having a processing unit in communication
with memory;

a functional unit in communication with at least one of the
processing units, the functional unit including tools to
support a write transaction in a fault-tolerant file system,
the tools comprising:

a placement manager to place data associated with a
received write transaction in the page cache layer and
to replicate the received data within the page cache
layer of one or more nodes in response to receipt of a
synchronous write transaction;

a director in communication with the placement man-
ager, the director to distinguish between a master
copy and a replica of the received data, including the
director to apply existing cache policies to the master
copy; and

an invalidation manager in communication with the
director, the invalidation manager to invalidate each
replica in response to a flush of the master copy to
persistent storage.

8. The system of claim 7, further comprising the master
copy to hold an exclusive cluster-wide write lock and the
replica to hold a shared cluster-wide write lock.

9. The system of claim 8, further comprising fault manager
in communication with the director, the fault manager to
maintain fault tolerance in response to a failure of a node
holding the master copy, including the fault manager to elect
a remote node in the cluster to acquire the master copy
through acquisition of the exclusive cluster-wide write lock
for the data.

10. The system of claim 9, further comprising a recovery
manager in communication with the director, the recovery
manager to recover content on the recovered failed node in
response to recovery of the failed node, including read data
from non-volatile memory of a surviving node, wherein the
surviving node is selected from the group consisting of: an
available node and the master node.

11. The system of claim 8, further comprising a transfer
manager in communication with the director, the transfer
manager to transfer designation of the master copy to a
requestor node, including revocation of the exclusive write
lock from the master copy, and a transfer of the exclusive
write lock to the requestor node.

12. The system of claim 8, further comprising a recovery
manager in communication with the director, the recovery
manager to recover data from non-volatile memory content
on each node in the cluster in response to recovery of the
cluster from a power failure, and to identify master and rep-
lica copies from a characteristic of data byte-range and to
validate master and replica copies by re-acquisition of clus-
ter-wide write locks.

US 9,152,501 B2

15

13. A computer program product for integrating a stable
layer with a page cache layer in a file system, the computer
program product comprising a non-transitory computer-read-
able storage medium having program code embodied there-
with, the program code being executable by a processor to:

temporarily hold committed data in distributed non-vola-

tile memory of nodes in a cluster;

in response to receiving a synchronous write transaction in

the file system, place data associated with the received
write transaction in the page cache layer and replicate
the received data within the page cache layer of one or
more remote nodes in the cluster;

distinguish between a master copy of the received data and

a replica of the received data, including application of
existing cache policies to the master copy of the received
data; and

invalidate each replica on the one or more remote nodes in

response to flushing the master copy to persistent stor-
age.

14. The computer program product of claim 13, further
comprising an instruction for the master copy to hold an
exclusive cluster-wide write lock and the replica to hold a
shared cluster-wide write lock.

15. The computer program product of claim 14, further
comprising an instruction to maintain fault tolerance in

15

16

response to a failure of a node holding the master copy,
including election of a remote node to acquire the master copy
by acquiring the exclusive cluster-wide write lock for the
data.

16. The computer program product of claim 15, further
comprising an instruction to recover content on the recovered
failed node in response to the recovery of the failed node,
including reading data from non-volatile memory of a surviv-
ing node, wherein the surviving node is selected from the
group consisting of: an available node and the master node.

17. The computer program product of claim 14, further
comprising an instruction to transfer designation of the mas-
ter copy to a requestor node, including revoking the exclusive
write lock from the master copy, and transferring the exclu-
sive write lock to the requestor node.

18. The computer program product of claim 13, further
comprising in response to recovery of the cluster from a
power failure, an instruction to recover data from non-volatile
memory content on each node, and identify master and rep-
lica copies from a characteristic of data byte-range and vali-
date master and replica copies by re-acquiring cluster-wide
write locks.

